Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Pharmacother ; 155: 113678, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108391

RESUMO

The vitamin A metabolite all-trans retinoic acid (ATRA; tretinoin) has anticancer potential. However, lack of clinical success has prevented its approval for solid tumours. Herein, we propose combining short-term low-dose ATRA with fimaporfin-based photodynamic therapy (ATRA+PDT) for the improved treatment of solid cancers. Compared to monotherapies, ATRA+PDT induced synergistic cytotoxic responses including promotion of apoptosis in colon and breast carcinoma cell lines. Neither enhanced activity of alkaline phosphatase (ALP) nor increased expression of CD133 was detected after ATRA treatment indicating that the improved therapeutic effect of ATRA+PDT is independent of the differentiation state of the cancer cells. In the human colorectal adenocarcinoma cell line HT-29, the effect of ATRA+PDT on gene expression was evaluated by RNA sequencing (RNA-seq). We identified 1129 differentially expressed genes (DEGs) after ATRA+PDT compared to PDT. Ingenuity Pathway Analysis (IPA) predicted the unfolded protein response (UPR), interferon (IFN) signaling and retinoic acid-mediated apoptosis signaling as strongly activated canonical pathways after ATRA+PDT compared to PDT. A validation of the RNA-sec data by RT-qPCR revealed that ATRA+PDT elevated mRNA expression of early growth response 1 (EGR1) and strongly the stress-induced activating transcription factor 3 (ATF3), of which was confirmed on the protein level. In addition, ATRA+PDT abolished mRNA expression of regenerating islet-derived protein 4 (REG4). During the first 20 days post-ATRA+PDT, we obtained significant anti-tumour responses in HT-29 xenografts, including complete responses in 2/5 mice. In conclusion, ATRA+PDT represent a novel combination therapy for solid tumours that should be further tested in immunocompetent preclinical models.


Assuntos
Fotoquimioterapia , Vitamina A , Humanos , Camundongos , Animais , Vitamina A/farmacologia , Fator 3 Ativador da Transcrição , Fosfatase Alcalina , Proteínas Associadas a Pancreatite , Tretinoína/farmacologia , Apoptose , RNA Mensageiro , Interferons/farmacologia , RNA , Linhagem Celular Tumoral
3.
J Photochem Photobiol B ; 225: 112355, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768077

RESUMO

The programmed death ligand-1 (PD-L1), also known as CD274 or B7-H1, is mainly expressed on cancer cells and/or immunosuppressive cells in the tumor microenvironment (TME) and plays an essential role in tumor progression and immune escape. Immune checkpoint inhibitors (ICIs) of the PD-1/PD-L1 axis have shown impressive clinical success, however, the majority of the patients do not respond to immune checkpoint therapy (ICT). Thus, to overcome ICT resistance there is a high need for potent and novel strategies that simultaneously target both tumor cells and immunosuppressive cells in the TME. In this study, we show that the intracellular light-controlled drug delivery method photochemical internalization (PCI) induce specific and strongly enhanced cytotoxic effects of the PD-L1-targeting immunotoxin, anti-PD-L1-saporin (Anti-PDL1-SAP), in the PD-L1+ triple-negative breast cancer MDA-MB-231 cell line, while no enhanced efficacy was obtained in the PD-L1 negative control cell line MDA-MB-453. Using fluorescence microscopy, we reveal that the anti-PD-L1 antibody binds to PD-L1 on the surface of the MDA-MD-231 cells and overnight accumulates in late endosomes and lysosomes where it co-localizes with the PCI photosensitizer fimaporfin (TPCS2a). Moreover, light-controlled endosomal/lysosomal escape of the anti-PD-L1 antibody and fimaporfin into the cytosol was obtained. We also confirm that the breast MDA-MB-468 and the prostate PC-3 and DU-145 cancer cell lines have subpopulations with PD-L1 expression. In addition, we show that interferon-gamma strongly induce PD-L1 expression in the per se PD-L1 negative CT26.WT cells and enhance the PD-L1 expression in MC-38 cells, of which both are murine colon cancer cell lines. In conclusion, our work provides an in vitro proof-of-concept of PCI-enhanced targeting and eradication of PD-L1 positive immunosuppressive cells. This light-controlled combinatorial strategy has a potential to advance cancer immunotherapy and should be explored in preclinical studies.


Assuntos
Antígeno B7-H1/metabolismo , Luz , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
4.
Biochem Pharmacol ; 194: 114837, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34780750

RESUMO

Rupture and permeabilization of endocytic vesicles can be triggered by various causes, such as pathogenic invasions, amyloid proteins, and silica crystals leading to cell death and degeneration. A cellular quality control process, called lysophagy was recently described to target damaged lysosomes for autophagic sequestration within isolation membranes in order to protect the cell from the consequences of lysosomal leakage. This protective process, however, might interfere with treatment conditions, such as photodynamic therapy (PDT) and the intracellular drug delivery method photochemical internalization (PCI). PCI-induced permeabilization of endosomes and lysosomes is purposely triggered to release drugs that are sequestered in these organelles into the cytosol in order to synergistically kill cancer cells. Here, we show that photochemical treatment with the PCI-photosensitizer TPCS2a/fimaporfin results in both induction of autophagy and inhibition of the autophagic flux. The autophagic response is accompanied by recruitment of ubiquitin (Ubq), p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3) to damaged vesicles, marked by Galectin 3 (Gal3). Furthermore, ultrastructural analysis revealed a homogenously thick p62-positive layer surrounding these permeabilized vesicles. Although p62 seems to be important during the selective autophagic sequestration, we show that its presence is not essential for the effective removal of damaged vesicles or the recovery of the lysosomal content. An active autophagic response and the presence of p62, however, is important for cancer cells to survive low-dose TPCS2a-PDT. Thus, targeting both p62 and autophagy together and independently, in a light-controlled/PCI based delivery of cancer therapeutics could increase the effectiveness of the treatment regime.


Assuntos
Autofagia/fisiologia , Sobrevivência Celular/fisiologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Proteínas de Ligação a RNA/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Resultado do Tratamento
5.
Cancers (Basel) ; 12(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053965

RESUMO

Lysosomal accumulation of sunitinib has been suggested as an underlying mechanism of resistance. Here, we investigated if photochemical internalization (PCI), a technology for cytosolic release of drugs entrapped in endosomes and lysosomes, would activate lysosomal sequestered sunitinib. By super-resolution fluorescence microscopy, sunitinib was found to accumulate in the membrane of endo/lysosomal compartments together with the photosensitizer disulfonated tetraphenylchlorin (TPCS2a). Furthermore, the treatment effect was potentiated by PCI in the human HT-29 and the mouse CT26.WT colon cancer cell lines. The cytotoxic outcome of sunitinib-PCI was, however, highly dependent on the treatment protocol. Thus, neoadjuvant PCI inhibited lysosomal accumulation of sunitinib. PCI also inhibited lysosomal sequestering of sunitinib in HT29/SR cells with acquired sunitinib resistance, but did not reverse the resistance. The mechanism of acquired sunitinib resistance in HT29/SR cells was therefore not related to lysosomal sequestering. Sunitinib-PCI was further evaluated on HT-29 xenografts in athymic mice, but was found to induce only a minor effect on tumor growth delay. In immunocompetent mice sunitinib-PCI enhanced areas of treatment-induced necrosis compared to the monotherapy groups. However, the tumor growth was not delayed, and decreased infiltration of CD3-positive T cells was indicated as a possible mechanism behind the failed overall response.

6.
Photochem Photobiol Sci ; 19(3): 308-312, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108197

RESUMO

Aldehyde dehydrogenases (ALDH) are detoxifying enzymes that are upregulated in cancer stem cells (CSCs) and may cause chemo- and ionizing radiation (IR) therapy resistance. By using the ALDEFLUOR assay, CD133 + human colon cancer cells HT-29, were FACSorted into three populations: ALDHbright, ALDHdim and unsorted (bulk) and treated with chemo-, radio- or photodynamic therapy (PDT) using the clinical relevant photosensitizer disulfonated tetraphenyl chlorin (TPCS2a/fimaporfin). Here we show that there is no difference in cytotoxic responses to TPCS2a-PDT in ALHDbright, ALDHdim or bulk cancer cells. Likewise, both 5-FU and oxaliplatin chemotherapy efficacy was not reduced in ALDHbright as compared to ALDHdim cancer cells. However, we found that ALHDbright HT-29 cells are significantly less sensitive to ionizing radiation compared to ALDHdim cells. This study demonstrates that the cytotoxic response to PDT (using TPCS2a as photosensitizer) is independent of ALDH activity in HT-29 cancer cells. Our results further strengthen the use of TPCS2a to target CSCs.


Assuntos
Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Neoplasias do Colo/terapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Substâncias Protetoras/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Substâncias Protetoras/química
7.
J Clin Med ; 9(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075165

RESUMO

Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.

8.
Cancers (Basel) ; 12(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936595

RESUMO

Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.

9.
Front Immunol ; 11: 576756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488576

RESUMO

Background and Aims: Photochemical internalization (PCI) is a technology for inducing release of endocytosed antigens into the cell cytosol via a light-induced process. Preclinical experiments have shown that PCI improves MHC class I antigen presentation, resulting in strongly enhanced CD8+ T-cell responses to polypeptide antigens. In PCI vaccination a mixture of the photosensitizing compound fimaporfin, vaccine antigens, and an adjuvant is administered intradermally followed by illumination of the vaccination site. This work describes an open label, phase I study in healthy volunteers, to assess the safety, tolerability, and immune response to PCI vaccination in combination with the adjuvant poly-ICLC (Hiltonol) (ClinicalTrials.gov Identifier: NCT02947854). Methods: The primary objective of the study was to assess the safety and local tolerance of PCI mediated vaccination, and to identify a safe fimaporfin dose for later clinical studies. A secondary objective was to analyze the immunological responses to the vaccination. Each subject received 3 doses of HPV16 E7 peptide antigens and two doses of Keyhole Limpet Hemocyanin (KLH) protein. A control group received Hiltonol and vaccine antigens only, whereas the PCI groups in addition received fimaporfin + light. Local and systemic adverse effects were assessed by standard criteria, and cellular and humoral immune responses were analyzed by ELISpot, flow cytometry, and ELISA assays. Results: 96 healthy volunteers were vaccinated with fimaporfin doses of 0.75-50 µg. Doses below 17.5 µg were safe and tolerable, higher doses exhibited local tolerability issues in some study subjects, mainly erythema, and pain during illumination. There were few, and only mild and expected systemic adverse events. The employment of PCI increased the number of subjects exhibiting a T-cell response to the HPV peptide vaccine about 10-fold over what was achieved with the antigen/Hiltonol combination without PCI. Moreover, the use of PCI seemed to result in a more consistent and multifunctional CD8+ T-cell response. An enhancement of the humoral immune response to KLH vaccination was also observed. Conclusions: Using PCI in combination with Hiltonol for intradermal vaccination is safe at fimaporfin doses below 17.5 µg, and gives encouraging immune responses to peptide and protein based vaccination.


Assuntos
Papillomavirus Humano 16/fisiologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Peptídeos/imunologia , Fármacos Fotossensibilizantes/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Adulto , Células Cultivadas , Feminino , Voluntários Saudáveis , Humanos , Imunidade Celular , Iluminação , Masculino , Pessoa de Meia-Idade , Processos Fotoquímicos , Vacinas de Subunidades , Adulto Jovem
10.
J Clin Med ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888091

RESUMO

The objective of this study was to develop and explore a novel CD133-targeting immunotoxin (IT) for use in combination with the endosomal escape method photochemical internalization (PCI). scFvCD133/rGelonin was recombinantly constructed by fusing a gene (scFvCD133) encoding the scFv that targets both non-glycosylated and glycosylated forms of both human and murine CD133/prominin-1 to a gene encoding the ribosome-inactivating protein (RIP) gelonin (rGelonin). RIP-activity was assessed in a cell-free translation assay. Selective binding and intracellular accumulation of scFvCD133/rGelonin was evaluated by flow cytometry and fluorescence microscopy. PCI of scFvCD133/rGelonin was explored in CD133high and CD133low cell lines and a CD133neg cell line, where cytotoxicity was evaluated by the MTT assay. scFvCD133/rGelonin exhibited superior binding to and a higher accumulation in CD133high cells compared to CD133low cells. No cytotoxic responses were detected in either CD133high or CD133low cells after 72 h incubation with <100 nM scFvCD133/rGelonin. Despite a severe loss in RIP-activity of scFvCD133/rGelonin compared to free rGelonin, PCI of scFvCD133/rGelonin induced log-fold reduction of viability compared to PCI of rGelonin. Strikingly, PCI of scFvCD133/rGelonin exceeded the cytotoxicity of PCI of rGelonin also in CD133low cells. In conclusion, PCI promotes strong cytotoxic activity of the per se non-toxic scFvCD133/rGelonin in both CD133high and CD133low cancer cells.

11.
J Control Release ; 283: 214-222, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883696

RESUMO

Bacterial pathogens such as Staphylococcus aureus and Staphylococcus epidermidis can survive in different types of cells including professional phagocytes, causing intracellular infections. Antibiotic treatment of intracellular infections is often unsuccessful due to the low efficacy of most antibiotics inside cells. Therefore, novel techniques which can improve intracellular activity of antibiotics are urgently needed. We aimed to use photochemical internalization (PCI) to enhance cytosolic release of antibiotics from endocytic vesicles after internalization. Our results show that PCI indeed caused cytosolic release of gentamicin and significantly increased its efficacy against S. epidermidis in vitro in mouse macrophages. Upon illumination for 15 min, the killing of intracellular S. epidermidis in RAW 264.7 cells by 10 or 30 µg/ml gentamicin was increased to 1 or 3 CFU log, respectively, owing to the use of PCI, whereas no killing by gentamicin only without PCI was observed. Moreover, survival of S. aureus-infected zebrafish embryos was significantly improved by treatment with PCI-gentamicin. PCI improved the therapeutic efficacy of gentamicin at a dose of 0.1 ng per embryo to a level similar to that of a dose of 0.4 ng per embryo, indicating that PCI can lower the antibiotic dose required for treating (intracellular) staphylococcal infection. Thus, the present study shows that PCI is a promising novel approach to enhance the intracellular efficacy of antibiotics via cytosolic release, allowing them to reach intracellular bacteria. This will expand their therapeutic window and will increase the numbers of antibiotics which can be used for treatment of intracellular infections.


Assuntos
Antibacterianos/administração & dosagem , Citosol/metabolismo , Gentamicinas/administração & dosagem , Luz , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Animais , Embrião não Mamífero , Camundongos , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Peixe-Zebra
12.
J Exp Clin Cancer Res ; 36(1): 187, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258566

RESUMO

BACKGROUND: Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. METHODS: 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. RESULTS: The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS2a, altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105-expressing 5-FUR cells, whereas little effect was seen in the CD105-negative non-resistant parental cancer cell lines. Strikingly, using the intracellular drug delivery method photochemical internalization (PCI) by combining light-controlled activation of the TPCS2a with nanomolar levels of CD105-saporin resulted in strong cytotoxic effects in the 5-FUR cell population. CONCLUSION: Our findings suggested that autophagy is an important resistance mechanism against the chemotherapeutic drug 5-FU in pancreatic cancer cells, and that inhibition of the autophagy process, either by CQ or lysosomal photodamage, can contribute to increased sensitivity to 5-FU. For the first time, we demonstrate the promise of PCI-based targeting of CD105 in site-specific elimination of 5-FU resistant pancreatic cancer cells in vitro. In conclusion, PCI-based targeting of CD105 may represent a potent anticancer strategy and should be further evaluated in pre-clinical models.


Assuntos
Adenocarcinoma/patologia , Imunotoxinas/farmacologia , Neoplasias Pancreáticas/patologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antineoplásicos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endoglina/antagonistas & inibidores , Transição Epitelial-Mesenquimal , Fluoruracila , Humanos , Fototerapia/métodos , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas
13.
Biochem Pharmacol ; 144: 63-77, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28784290

RESUMO

Here we report on the induction of resistance to photodynamic therapy (PDT) in the ABCG2-high human breast cancer cell line MA11 after repetitive PDT, using either Pheophorbide A (PhA) or di-sulphonated meso-tetraphenylchlorin (TPCS2a) as photosensitizer. Resistance to PhA-PDT was associated with enhanced expression of the efflux pump ABCG2. TPCS2a-PDT-resistance was neither found to correspond with lower TPCS2a-accumulation nor reduced generation of reactive oxygen species (ROS). Cross-resistance to chemotherapy (doxorubicin) or radiotherapy was not observed. TPCS2a-PDT-resistant cells acquired a higher proliferation capacity and an enhanced expression of EGFR and ERK1/2. p38 MAPK was found to be a death-signalling pathway in the MA11 cells post TPCS2a-PDT, contrasting the MA11/TR cells in which PDT generated a sustained phosphorylation of p38 that had lost its death-mediated signalling, and an abrogated activation of its downstream effector MAPKAPK2. No difference in apoptosis, necrosis or autophagy responses was found between the treated cell lines. Development of TPCS2a-PDT resistance in the MDA-MB-231 cell line was also established, however, p38 MAPK did not play a role in the PDT-resistance. MCF-7 cells did not develop TPCS2a-PDT-resistance. Photochemical internalisation (PCI) of 1 pM of EGF-saporin induced equal strong cytotoxicity in both MA11 and MA11/TR cells. In conclusion, loss of p38 MAPK-inducing death signalling is the main mechanism of resistance to TPCS2a-PDT in the MA11/TR cell line. This work provides mechanistic knowledge of intrinsic and acquired PDT-resistance which is dependent on choice of photosensitizer, and suggests PCI as a rational therapeutic intervention for the elimination of PDT-resistant cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Clorofila/análogos & derivados , Clorofila/farmacologia , Feminino , Humanos , Células MCF-7 , Porfirinas/farmacologia
14.
J Control Release ; 206: 37-48, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25758331

RESUMO

The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Imunotoxinas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Proteínas Inativadoras de Ribossomos Tipo 1/administração & dosagem , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Imunotoxinas/metabolismo , Imunotoxinas/farmacologia , Luz , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Reto/efeitos dos fármacos , Reto/metabolismo , Reto/patologia , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas
15.
Photochem Photobiol Sci ; 14(8): 1433-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25805311

RESUMO

Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.


Assuntos
Endossomos/efeitos dos fármacos , Endossomos/efeitos da radiação , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Fotoquimioterapia/métodos , Animais , Sistemas de Liberação de Medicamentos , Endossomos/fisiologia , Humanos , Células-Tronco Neoplásicas/fisiologia , Fármacos Fotossensibilizantes/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
16.
PLoS One ; 9(7): e103070, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068508

RESUMO

BACKGROUND: CD37 is an internalizing B-cell antigen expressed on Non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia cells (CLL). The anti-CD37 monoclonal antibody HH1 was conjugated to the bifunctional chelator p-SCN-Bn-DOTA and labelled with the beta-particle emitting radionuclide 177Lu creating the radio-immunoconjugate (RIC) 177Lu-DOTA-HH1 (177Lu-HH1, trade name Betalutin). The present toxicity study was performed prior to initiation of clinical studies with 177Lu-HH1. METHODOLOGY/PRINCIPAL FINDINGS: Nude mice with or without tumor xenografts were treated with 50 to 1000 MBq/kg 177Lu- HH1 and followed for clinical signs of toxicity up to ten months. Acute, life threatening bone marrow toxicity was observed in animals receiving 800 and 1000 MBq/kg 177Lu-HH1. Significant changes in serum concentrations of liver enzymes were evident for treatment with 1000 MBq/kg 177Lu-HH1. Lymphoid depletion, liver necrosis and atrophy, and interstitial cell hyperplasia of the ovaries were also observed for mice in this dose group. CONCLUSIONS/SIGNIFICANCE: 177Lu-DOTA-HH1 was well tolerated at dosages about 10 times above those considered relevant for radioimmunotherapy in patients with B-cell derived malignancies.The toxicity profile was as expected for RICs. Our experimental results have paved the way for clinical evaluation of 177Lu-HH1 in NHL patients.


Assuntos
Anticorpos Monoclonais , Imunoconjugados/farmacologia , Lutécio , Radioisótopos , Compostos Radiofarmacêuticos/farmacologia , Tetraspaninas/antagonistas & inibidores , Animais , Antígenos de Neoplasias , Feminino , Imunoconjugados/administração & dosagem , Imunoconjugados/toxicidade , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/toxicidade , Distribuição Tecidual , Testes de Toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Pharm ; 11(8): 2764-76, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24960585

RESUMO

We have used the site specific and light-depended drug delivery method photochemical internalization (PCI) to release an immunotoxin (IT), targeting the CD44 receptor, into the cytosol of target cells. The IT consisted of a pan CD44 mAb (clone IM7) bound to the ribosome inactivating protein (RIP) saporin by a biotin-streptavidin linker named IM7-saporin. PCI is based upon photosensitizing compounds localized in the membrane of endosomes and lysosomes causing membrane rupture upon illumination followed by release of the IT into the cytosol. In this in vitro study, we have used 7 different human cancer cell lines of various origins to investigate the cytotoxic effect of PCI-based targeting of the cancer stem cell (CSC) marker CD44. Epi-fluorescence microscopy shows both specific binding and uptake of the IM7-Alexa488, after 30 min and 18 h of incubation, and colocalization with the PCI-photosensitizer TPCS2a prior to light-triggered cytosolic release of the CD44-targeting IT. PCI of IM7-saporin resulted in efficient and specific cytotoxicity in CD44-expressing but not in CD44-negative cancer cells. A higher level of reactive oxygen species (ROS) was found in untreated and photodynamic therapy (PDT)-treated LNCaP (CD44(neg)) compared to that of DU145 (CD44(pos)) prostate cancer (PC) cells. This may explain the PDT-resistance observed in the DU145 cells. PCI-based targeting of CD44-expressing cancer cells gives very potent and specific cytotoxic effects and may represent a rational strategy for achieving site-selective elimination of CSCs in aggressive androgen-independent and treatment-resistant PC cells preventing cytotoxic effects on distant normal stem cells.


Assuntos
Receptores de Hialuronatos/metabolismo , Imunotoxinas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1/química , Anticorpos Monoclonais/química , Biotina/química , Linhagem Celular Tumoral , Citosol/metabolismo , Portadores de Fármacos/química , Endossomos/metabolismo , Citometria de Fluxo , Humanos , Luz , Lisossomos/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Saporinas , Sensibilidade e Especificidade , Estreptavidina/química , Fatores de Tempo
18.
J Control Release ; 174: 143-50, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24280261

RESUMO

The protection or treatment of several immunological disorders is dependent on the antigen-specific and cytotoxic CD8 T cells. However, vaccines aimed at stimulating CD8 T-cell responses are typically ineffective because vaccine antigens are primarily processed by the MHC class-II and not the MHC class-I pathway of antigen presentation: the latter requires cytosolic delivery of antigen. In order to facilitate targeting of antigen to cytosol, the antigen was combined with the photosensitiser TPCS2a (disulfonated tetraphenyl chlorin) and administered intradermally to mice. The photosensitiser was activated by illumination of the injection site. This photochemical internalization (PCI) strongly increased the stimulation of CD8 T-cell responses as measured by antigen-specific proliferation and secretion of pro-inflammatory cytokines. Fluorescence microscopy showed that delivery to cytosol was TPCS2a dependent and occurred by light-induced disruption of TPCS2a- and antigen-containing endosomes. PCI-based vaccination prevented growth of malignant B16 cells as compared with vaccination without PCI. In conclusion, PCI represents a potent tool for delivery of antigens to cytosol for stimulation of cytotoxic CD8 T-cell responses. This study demonstrated a first proof-of-principle for PCI-mediated immunisation with potential application in cancer immunotherapy.


Assuntos
Antígenos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ovalbumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Genes MHC Classe I/genética , Imunização , Injeções Intradérmicas , Luz , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/efeitos da radiação
19.
Free Radic Biol Med ; 65: 1300-1309, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24076428

RESUMO

A wide range of anti-cancer therapies have been shown to induce resistance upon repetitive treatment and such adapted resistance may also cause cross-resistance to other treatment modalities. We here show that MES-SA/Dx5 cells with adapted resistance to doxorubicin (DOX) are cross-resistant to photodynamic therapy (PDT). A DOX-induced increased expression of the reactive oxygen species (ROS)-scavenging proteins glutathione peroxidase (GPx) 1 and GPx4 in MES-SA/Dx5 cells was indicated as the mechanism of resistance to PDT in line with the reduction in PDT-generated ROS observed in this cell line. ROS-induced p38 activation was, in addition, shown to be reduced to one-third of the signal of the parental MES-SA cells 2h after PDT, and addition of the p38 inhibitor SB203580 confirmed p38 activation as a death signal after PDT in the MES-SA cells. The MES-SA/Dx5 cells were also cross-resistant to ionizing radiation in agreement with the increased GPx1 and GPx4 expression. Surprisingly, PDT-induced endo/lysosomal release of the ribosome-inactivating protein gelonin (photochemical internalization (PCI)) was more effective in the PDT-resistant MES-SA/Dx5 cells, as measured by synergy calculations in both cell lines. Analysis of death-inducing signaling indicated a low activation of caspase-3 and a strong PARP I cleavage after PDT and PCI in both cell lines. The PARP I activation was, however, stronger after PCI than after PDT in the MES-SA cells, but not in the MES-SA/Dx5 cells, and therefore cannot explain the strong PCI effect in the MES-SA/Dx5 cells. In conclusion PCI of recombinant gelonin circumvents ROS resistance in an apoptosis-independent manner.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fotoquimioterapia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Sarcoma , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutationa Peroxidase/biossíntese , Humanos , Imidazóis/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Piridinas/farmacologia , Espécies Reativas de Oxigênio , Sarcoma/tratamento farmacológico , Sarcoma/radioterapia , Sarcoma/terapia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Glutationa Peroxidase GPX1
20.
Photochem Photobiol ; 89(5): 1185-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819771

RESUMO

Cancer treatment can be exerted by targeting both cancer cells and the vasculature supplying solid tumors. Photochemical internalization (PCI) is a modality for cytosolic drug delivery, but recent data on contrast-enhanced MRI have indicated that the method also reduces blood perfusion in HT1080 fibrosarcoma xenografts. The present report aims to investigate if PCI may exert direct cytotoxic effects on endothelial cells. PCI of saporin was performed on endothelial human umbilical vein endothelial cell (HUVEC) and fibrosarcoma cells (HT1080) using two PCI-relevant photosensitizers, TPPS2a and AlPcS2a. A 22- and 13-fold higher photosensitizer uptake was detected in the endothelial cells compared with the HT1080 cells for AlPcS2a and TPPS2a, respectively. PCI of saporin was, however, found more effective in HT1080 cells. For HT1080 cells, PCI with saporin increased cell killing 1.9-fold over photodynamic therapy alone, but under the same conditions, only increased HUVEC cell killing by 1.6- and 1.3-fold with AlPcS2a and TPPS2a , respectively. Saporin uptake was higher in HUVECs than in the HT1080 cells, hence did not reflect the cell line differences in PCI efficacy. This is the first report on PCI-mediated kill of endothelial cells and lays the foundation for further preclinical evaluation of the PCI technology as an antivascular strategy to ablate tumors.


Assuntos
Endotélio Vascular/metabolismo , Fotoquimioterapia , Linhagem Celular Tumoral , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Saporinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...